Ad
related to: 2nd external derivative symmetry equation solver download free app for iphone 3g
Search results
Results From The WOW.Com Content Network
The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6 Neither Rolle's theorem nor the mean-value theorem hold for the symmetric derivative; some similar but weaker statements have been proved.
The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.
The exterior derivative of this 0-form is the 1-form df. When an inner product ·,· is defined, the gradient ∇f of a function f is defined as the unique vector in V such that its inner product with any element of V is the directional derivative of f along the vector, that is such that
Maxima (/ ˈ m æ k s ɪ m ə /) is a powerful software package for performing computer algebra calculations in mathematics and the physical sciences. It is written in Common Lisp and runs on all POSIX platforms such as macOS, Unix, BSD, and Linux, as well as under Microsoft Windows and Android.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
Mathieu's differential equations appear in a wide range of contexts in engineering, physics, and applied mathematics. Many of these applications fall into one of two general categories: 1) the analysis of partial differential equations in elliptic geometries, and 2) dynamical problems which involve forces that are periodic in either space or time.