Search results
Results From The WOW.Com Content Network
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization , some or all of the variables used in a discrete optimization problem are restricted to be discrete variables —that is, to assume only a discrete set of values, such as the integers .
There are several schools of thought as to why and how the PSO algorithm can perform optimization. A common belief amongst researchers is that the swarm behaviour varies between exploratory behaviour, that is, searching a broader region of the search-space, and exploitative behaviour, that is, a locally oriented search so as to get closer to a ...
This is a chronological table of metaheuristic algorithms that only contains fundamental computational intelligence algorithms. Hybrid algorithms and multi-objective algorithms are not listed in the table below.
Reactive search optimization focuses on combining machine learning with optimization, by adding an internal feedback loop to self-tune the free parameters of an algorithm to the characteristics of the problem, of the instance, and of the local situation around the current solution. Genetic algorithms maintain a pool of solutions rather than ...
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
In the ant colony optimization algorithms, an artificial ant is a simple computational agent that searches for good solutions to a given optimization problem. To apply an ant colony algorithm, the optimization problem needs to be converted into the problem of finding the shortest path on a weighted graph. In the first step of each iteration ...
In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity.
Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks.