When.com Web Search

  1. Ads

    related to: solve 5 simultaneous equations 1

Search results

  1. Results From The WOW.Com Content Network
  2. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown. Repeat steps 1 and 2 until the system is reduced to a single linear equation. Solve this equation, and then back-substitute until the entire solution is found. For example, consider the following system:

  3. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    A trigonometric equation is an equation g = 0 where g is a trigonometric polynomial. Such an equation may be converted into a polynomial system by expanding the sines and cosines in it (using sum and difference formulas), replacing sin(x) and cos(x) by two new variables s and c and adding the new equation s 2 + c 2 – 1 = 0.

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  5. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  6. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  7. System of equations - Wikipedia

    en.wikipedia.org/wiki/System_of_equations

    In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single equations, namely as a: System of linear equations, System of nonlinear equations,

  8. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process .

  9. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in.