Search results
Results From The WOW.Com Content Network
Concurrent and parallel programming languages involve multiple timelines. Such languages provide synchronization constructs whose behavior is defined by a parallel execution model. A concurrent programming language is defined as one which uses the concept of simultaneously executing processes or threads of execution as a means of structuring a ...
The opposite of embarrassingly parallel problems are inherently serial problems, which cannot be parallelized at all. A common example of an embarrassingly parallel problem is 3D video rendering handled by a graphics processing unit, where each frame (forward method) or pixel (ray tracing method) can be handled with no interdependency. [3]
Fork–join is the main model of parallel execution in the OpenMP framework, although OpenMP implementations may or may not support nesting of parallel sections. [6] It is also supported by the Java concurrency framework, [ 7 ] the Task Parallel Library for .NET, [ 8 ] and Intel's Threading Building Blocks (TBB). [ 1 ]
Single instruction, multiple threads (SIMT) is an execution model used in parallel computing where single instruction, multiple data (SIMD) is combined with multithreading. It is different from SPMD in that all instructions in all "threads" are executed in lock-step.
Parallelism (simultaneous execution on multiple processing units). Parallelism executes tasks independently on multiple CPU cores, while concurrency manages multiple tasks on one or more cores, switching between threads or time-slicing without completing each one.
In this way, multiple processes are part-way through execution at a single instant, but only one process is being executed at that instant. [citation needed] Concurrent computations may be executed in parallel, [3] [6] for example, by assigning each process to a separate processor or processor core, or distributing a computation across a network.
Thread Level Speculation (TLS), also known as Speculative Multi-threading, or Speculative Parallelization, [1] is a technique to speculatively execute a section of computer code that is anticipated to be executed later in parallel with the normal execution on a separate independent thread. Such a speculative thread may need to make assumptions ...
Parallel execution results in a speedup of 4 over sequential execution. One important thing to note is that the locality of data references plays an important part in evaluating the performance of a data parallel programming model. Locality of data depends on the memory accesses performed by the program as well as the size of the cache.