When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital pole - Wikipedia

    en.wikipedia.org/wiki/Orbital_pole

    The north orbital poles of the Solar System major planets all lie within Draco. [1] The central yellow dot represents the Sun's rotation axis north pole. [citation needed] Jupiter's north orbital pole is colored orange, Mercury's pale blue, Venus's green, Earth's blue, Mars's red, Saturn's magenta, Uranus's grey, and Neptune's lavender.

  3. Sun-synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Sun-synchronous_orbit

    An orbit will be Sun-synchronous when the precession rate ρ = ⁠ dΩ / dt ⁠ equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ⁠ ΔΩ E / T E ⁠ = ρ = ⁠ ΔΩ / T ⁠, where T E is the Earth orbital period, while T is the period of the spacecraft ...

  4. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars , planets , dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids ), as well as natural satellites and minor-planet moons .

  5. Position of the Sun - Wikipedia

    en.wikipedia.org/wiki/Position_of_the_Sun

    The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.

  6. Ecliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Ecliptic_coordinate_system

    The origin is the Sun's center, the plane of reference is the ecliptic plane, and the primary direction (the x-axis) is the March equinox. A right-handed rule specifies a y-axis 90° to the east on the fundamental plane. The z-axis points toward the north ecliptic pole. The reference frame is relatively stationary, aligned with the March equinox.

  7. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    The heliocentric ecliptic system describes the planets' orbital movement around the Sun, and centers on the barycenter of the Solar System (i.e. very close to the center of the Sun). The system is primarily used for computing the positions of planets and other Solar System bodies, as well as defining their orbital elements.

  8. Solar coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Solar_coordinate_systems

    The Sun is a rotating sphere of plasma at the center of the Solar System. It lacks a solid or liquid surface, so the interface separating its interior and its exterior is usually defined as the boundary where plasma becomes opaque to visible light, the photosphere. Since plasma is gaseous in nature, this surface has no permanent demarcated ...

  9. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.