Ads
related to: magnetic field of two magnets notes worksheet gradegenerationgenius.com has been visited by 10K+ users in the past month
education.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
If the magnet is aligned with the magnetic field, corresponding to two magnets oriented in the same direction near the poles, then it will be drawn into the larger magnetic field. If it is oppositely aligned, such as the case of two magnets with like poles facing each other, then the magnet will be repelled from the region of higher magnetic field.
The magnetic field of permanent magnets can be quite complicated, especially near the magnet. The magnetic field of a small [note 6] straight magnet is proportional to the magnet's strength (called its magnetic dipole moment m). The equations are non-trivial and depend on the distance from the magnet and the orientation of the magnet.
The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface). For the intrinsic order of magnitude of magnetic fields, see: Orders of magnitude (magnetic moment). Note:
A magnet is a material or object that produces a magnetic field.This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.
For an electromagnet with a cylindrical bore, producing a pure multipole field of order , the stored magnetic energy is: =!. Here, is the permeability of free space, is the effective length of the magnet (the length of the magnet, including the fringing fields), is the number of turns in one of the coils (such that the entire device has turns), and is the current flowing in the coils.
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
A ferromagnetic cylinder showing various magnetization patterns and magnetic field Cylinder magnetization. A Halbach cylinder is a magnetized cylinder composed of ferromagnetic material producing (in the idealized case) an intense magnetic field confined entirely within the cylinder, with zero field outside. The cylinders can also be magnetized ...
The potential magnetic energy of a magnet or magnetic moment in a magnetic field is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: = The mechanical work takes the form of a torque : = = which will act to "realign" the magnetic dipole with the magnetic field.