Search results
Results From The WOW.Com Content Network
An example is the apparent (longitudinal) singularity at the 90 degree latitude in spherical coordinates. An object moving due north (for example, along the line 0 degrees longitude ) on the surface of a sphere will suddenly experience an instantaneous change in longitude at the pole (i.e., jumping from longitude 0 to longitude 180 degrees).
The transformation between Schwarzschild coordinates and Kruskal–Szekeres coordinates defined for r > 2GM and < < can be extended, as an analytic function, at least to the first singularity which occurs at =. Thus the above metric is a solution of Einstein's equations throughout this region.
A coordinate singularity occurs when an apparent singularity or discontinuity occurs in one coordinate frame, which can be removed by choosing a different frame. An example of this is the apparent singularity at the 90 degree latitude in spherical coordinates. An object moving due north (for example, along the line 0 degrees longitude) on the ...
The time coordinate used in the Lemaître coordinates is identical to the "raindrop" time coordinate used in the Gullstrand–Painlevé coordinates. The other three: the radial and angular coordinates r , θ , ϕ {\displaystyle r,\theta ,\phi } of the Gullstrand–Painlevé coordinates are identical to those of the Schwarzschild chart.
There is no coordinate singularity at the Schwarzschild radius (event horizon). The outgoing ones are simply the time reverse of ingoing coordinates (the time is the proper time along outgoing particles that reach infinity with zero velocity). The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand [2] in 1922.
Kruskal–Szekeres coordinates, a chart covering the entire spacetime manifold of the maximally extended Schwarzschild solution and are well-behaved everywhere outside the physical singularity, Eddington–Finkelstein coordinates, an alternative chart for static spherically symmetric spacetimes,
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
These hyperbolic coordinates can be separated into two main variants depending on the accelerated observer's position: If the observer is located at time T = 0 at position X = 1/α (with α as the constant proper acceleration measured by a comoving accelerometer), then the hyperbolic coordinates are often called Rindler coordinates with the ...