When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  3. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Kinetic energy per unit mass: ⁠ 1 / 2 ⁠ v 2, where v is the speed (giving J/kg when v is in m/s). See also kinetic energy per unit mass of projectiles . Potential energy with respect to gravity, close to Earth, per unit mass: gh , where g is the acceleration due to gravity ( standardized as ≈9.8 m/s 2 ) and h is the height above the ...

  4. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  5. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules. For example, one would calculate the kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as

  6. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    Planck units modified so that 8 π G = 1 are known as reduced Planck units, because the Planck mass is divided by √ 8 π. Also, the Bekenstein–Hawking formula for the entropy of a black hole simplifies to S BH = ( m BH ) 2 /2 = 2 π A BH .

  7. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.

  8. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.

  9. Equivalent weight - Wikipedia

    en.wikipedia.org/wiki/Equivalent_weight

    The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2] For example, the equivalent weight of oxygen is 16.0/2 = 8.0 grams.

  1. Related searches how to find the speed formula mass of matter in grams divided by weight

    unit weight formulaunit weight of water formula
    saturated unit weight formula