When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  3. Polynomial code - Wikipedia

    en.wikipedia.org/wiki/Polynomial_code

    A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that . In BCH codes, the generator polynomial is chosen to have specific roots in an extension field, in a way that achieves high Hamming distance.

  4. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.

  5. Primitive polynomial - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial

    Download QR code; Print/export Download as PDF; Printable version ... In different branches of mathematics, primitive polynomial may refer to: Primitive polynomial ...

  6. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0. Now λ 51 = 1, so λ is not a primitive element of GF(2 8) and generates a multiplicative subgroup of order 51. [5] The monic irreducible polynomial x 8 + x 4 + x 3 + x 2 + 1 over GF(2) is primitive, and all 8 roots ...

  7. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 ( x ) = x + 1 , the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2 .

  8. Primitive part and content - Wikipedia

    en.wikipedia.org/wiki/Primitive_part_and_content

    A polynomial is primitive if its content equals 1. Thus the primitive part of a polynomial is a primitive polynomial. Gauss's lemma for polynomials states that the product of primitive polynomials (with coefficients in the same unique factorization domain) also is primitive. This implies that the content and the primitive part of the product of ...

  9. GF(2) - Wikipedia

    en.wikipedia.org/wiki/GF(2)

    GF(2) (also denoted , Z/2Z or /) is the finite field with two elements. [1] [a]GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual.