Search results
Results From The WOW.Com Content Network
In the 10th century, the Iraqi mathematician Al-Hashimi worked with numbers as such, called "lines" but not necessarily considered as measurements of geometric objects, to prove algebraic propositions concerning multiplication, division, etc., including the existence of irrational numbers. [11]
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem".
Mathematical constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then ...
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. [5] The field was founded by Harvey Friedman . Its defining method can be described as "going backwards from the theorems to the axioms ", in contrast to the ordinary mathematical practice of deriving ...
Another variant, called complete induction, course of values induction or strong induction (in contrast to which the basic form of induction is sometimes known as weak induction), makes the induction step easier to prove by using a stronger hypothesis: one proves the statement (+) under the assumption that () holds for all natural numbers less ...
The Kissing Number Problem. A broad category of problems in math are called the Sphere Packing Problems. They range from pure math to practical applications, generally putting math terminology to ...
A field extension in which every element of F is algebraic over E is called an algebraic extension. Any finite extension is necessarily algebraic, as can be deduced from the above multiplicativity formula. [31] The subfield E(x) generated by an element x, as above, is an algebraic extension of E if and only if x is an algebraic element.