Search results
Results From The WOW.Com Content Network
Formulas and are logically equivalent if and only if the statement of their material equivalence is a tautology. [ 2 ] The material equivalence of p {\displaystyle p} and q {\displaystyle q} (often written as p ↔ q {\displaystyle p\leftrightarrow q} ) is itself another statement in the same object language as p {\displaystyle p} and q ...
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15. The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
Many logicians in the early 20th century used the term 'tautology' for any formula that is universally valid, whether a formula of propositional logic or of predicate logic. In this broad sense, a tautology is a formula that is true under all interpretations, or that is logically equivalent to the negation of a contradiction.
Tautological consequence can also be defined as ∧ ∧ ... ∧ → is a substitution instance of a tautology, with the same effect. [2]It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied.
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [74] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [51]
At any time, if P→Q is true, it can be replaced by P→(P∧Q). One possible case for P→Q is for P to be true and Q to be true; thus P∧Q is also true, and P→(P∧Q) is true. Another possible case sets P as false and Q as true. Thus, P∧Q is false and P→(P∧Q) is false; false→false is true. The last case occurs when both P and Q ...
In propositional logic, the commutativity of conjunction is a valid argument form and truth-functional tautology. It is considered to be a law of classical logic. It is the principle that the conjuncts of a logical conjunction may switch places with each other, while preserving the truth-value of the resulting proposition. [1]