Search results
Results From The WOW.Com Content Network
This process is known as thermohaline circulation. In the Earth's polar regions ocean water gets very cold, forming sea ice. As a consequence the surrounding seawater gets saltier, because when sea ice forms, the salt is left behind. As the seawater gets saltier, its density increases, and it starts to sink.
II) An equilibrium between seawater and planktonic nutrient pools is maintained through biotic feedback mechanisms. [1] [3] Redfield proposed a thermostat like scenario in which the activities of nitrogen fixers and denitrifiers keep the nitrate to phosphate ratio in the seawater near the requirements in the protoplasm. [4]
Or intrusion of seawater increases the chemical concentration of water. Water is too saline to be drinkable. [47] Saline 10000-36000 Similar to seawater. Strong evaporation of groundwater or fully mixing with seawater. Hyper-Saline 36000-100000 Strong evaporation on seawater or groundwater under a closed system. Brine >100000
A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location.
The freezing point of seawater decreases as salt concentration increases. At typical salinity, it freezes at about −2 °C (28 °F). [1] The coldest seawater still in the liquid state ever recorded was found in 2010, in a stream under an Antarctic glacier: the measured temperature was −2.6 °C (27.3 °F). [2]
The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere.Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, [1] as the main source of gaseous phosphorus ...
The decreasing saturation of seawater with respect to calcium carbonate, associated with ocean acidification, a result of increased carbon dioxide (CO 2) absorption by the oceans, poses a significant threat to marine calcifiers. As CO 2 concentrations in seawater rise, a decrease in pH and a reduction in carbonate ion concentrations in seawater ...
His work was extrapolated to other HNLC regions through evidence which linked low surface iron concentration with low chlorophyll. [6] In response to iron fertilization experiments (IronEx, SOIREE, SEEDS, etc.) in HNLC areas, large phytoplankton responses such as decreased surface nutrient concentration and increased biological activity were ...