Search results
Results From The WOW.Com Content Network
This is a sub-category of Category:Scheduling algorithms, focusing on heuristic algorithms for scheduling tasks (jobs) to processors (machines). For optimization problems related to scheduling, see Category:Optimal scheduling.
In packet-switched computer networks and other statistical multiplexing, the notion of a scheduling algorithm is used as an alternative to first-come first-served queuing of data packets. The simplest best-effort scheduling algorithms are round-robin, fair queuing (a max-min fair scheduling algorithm), proportional-fair scheduling and maximum ...
Algorithms for scheduling tasks and processes by process schedulers and network packets by network schedulers in computing and communications systems. Subcategories This category has the following 4 subcategories, out of 4 total.
List scheduling is a greedy algorithm for Identical-machines scheduling. The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival. The algorithm repeatedly executes the ...
Optimal job scheduling is a class of optimization problems related to scheduling. The inputs to such problems are a list of jobs (also called processes or tasks) and a list of machines (also called processors or workers). The required output is a schedule – an assignment of jobs to machines. The schedule should optimize a certain objective ...
Step 2 of the algorithm is essentially the list-scheduling (LS) algorithm. The difference is that LS loops over the jobs in an arbitrary order, while LPT pre-orders them by descending processing time. LPT was first analyzed by Ronald Graham in the 1960s in the context of the identical-machines scheduling problem. [1] Later, it was applied to ...
Modulo scheduling: an algorithm for generating software pipelining, which is a way of increasing instruction level parallelism by interleaving different iterations of an inner loop. Trace scheduling: the first practical approach for global scheduling, trace scheduling tries to optimize the control flow path that is executed most often.
Common scheduling disciplines include the following: Random scheduling (RSS) First In, First Out , also known as First Come First Served (FCFS) Last In, First Out ; Shortest seek first, also known as Shortest Seek / Service Time First (SSTF) Elevator algorithm, also known as SCAN (including its variants, C-SCAN, LOOK, and C-LOOK)