Search results
Results From The WOW.Com Content Network
Lectures on Theoretical Physics is a six-volume series of physics textbooks translated from Arnold Sommerfeld's classic German texts Vorlesungen über Theoretische Physik. The series includes the volumes Mechanics , Mechanics of Deformable Bodies , Electrodynamics , Optics , Thermodynamics and Statistical Mechanics , and Partial Differential ...
Original file (1,239 × 1,752 pixels, file size: 471 KB, MIME type: application/pdf, 74 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
Thermal physics, generally speaking, is the study of the statistical nature of physical systems from an energetic perspective. Starting with the basics of heat and temperature, thermal physics analyzes the first law of thermodynamics and second law of thermodynamics from the statistical perspective, in terms of the number of microstates corresponding to a given macrostate.
The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". [1] The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1964.
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
According to the second law of thermodynamics, a system assumes a configuration of maximum entropy at thermodynamic equilibrium. We seek a probability distribution of states ρ i {\displaystyle \rho _{i}} that maximizes the discrete Gibbs entropy S = − k B ∑ i ρ i ln ρ i {\displaystyle S=-k_{\text{B}}\sum _{i}\rho _{i}\ln \rho _{i ...
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, [1] chemistry, neuroscience, [2] computer science, [3] [4] information theory [5] and ...