Search results
Results From The WOW.Com Content Network
The memory color effect is the phenomenon that the canonical hue of a type of object acquired through experience (e.g. the sky, a leaf, or a strawberry) can directly modulate the appearance of the actual colors of objects. Human observers acquire memory colors through their experiences with instances of that type.
The data collected from neuroimaging studies gives researchers the ability to visualize which brain regions are activated in specific cognitive visual memory tasks. With the use of brain imaging devices researchers able to further investigate memory performance above and beyond standard tests based on exact response times, and activation.
A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.
Chromatic adaptation is the human visual system’s ability to adjust to changes in illumination in order to preserve the appearance of object colors. It is responsible for the stable appearance of object colors despite the wide variation of light which might be reflected from an object and observed by our eyes.
Hue cancellation experiments start with a color (e.g. yellow) and attempt to determine how much of the opponent color (e.g. blue) of one of the starting color's components must be added to reach the neutral point. [12] [13] In 1959, Gunnar Svaetichin and MacNichol [14] recorded from the retina of fish and reported of three distinct types of cells:
Color vision is categorized foremost according to the dimensionality of the color gamut, which is defined by the number of primaries required to represent the color vision. This is generally equal to the number of photopsins expressed: a correlation that holds for vertebrates but not invertebrates .
The original CIECAM97s color appearance model uses the Bradford transformation matrix (M BFD) (as does the LLAB color appearance model). [3] This is a “spectrally sharpened” transformation matrix (i.e. the L and M cone response curves are narrower and more distinct from each other).
It is a concept studied in vision science, more specifically in the psychophysics of visual perception. A traditional term for "flicker fusion" is "persistence of vision", but this has also been used to describe positive afterimages or motion blur. Although flicker can be detected for many waveforms representing time-variant fluctuations of ...