Ads
related to: pattern recognition exercises for adults worksheets
Search results
Results From The WOW.Com Content Network
In psychology and cognitive neuroscience, pattern recognition is a cognitive process that matches information from a stimulus with information retrieved from memory. [1]Pattern recognition occurs when information from the environment is received and entered into short-term memory, causing automatic activation of a specific content of long-term memory.
Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent patterns.
In cognitive science, prototype-matching is a theory of pattern recognition that describes the process by which a sensory unit registers a new stimulus and compares it to the prototype, or standard model, of said stimulus. Unlike template matching and featural analysis, an exact match is not expected for prototype-matching, allowing for a more ...
An artificial neural network (ANN) combines biological principles with advanced statistics to solve problems in domains such as pattern recognition and game-play. ANNs adopt the basic model of neuron analogues connected to each other in a variety of ways.
Leonard Uhr (1927 – October 5, 2000) was an American computer scientist and a pioneer in computer vision, pattern recognition, machine learning and cognitive science.He was an expert in many aspects of human neurophysiology and perception, and a central theme of his research was to design artificial intelligence systems based on his understanding of how the human brain works.
The Wechsler Adult Intelligence Scale (WAIS) is an IQ test designed to measure intelligence and cognitive ability in adults and older adolescents. [1] For children between the ages of 6 and 16, Wechsler Intelligence Scale for Children (WISC) is commonly used.
The history of computational thinking as a concept dates back at least to the 1950s but most ideas are much older. [6] [3] Computational thinking involves ideas like abstraction, data representation, and logically organizing data, which are also prevalent in other kinds of thinking, such as scientific thinking, engineering thinking, systems thinking, design thinking, model-based thinking, and ...
In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis. When representing images, the feature values ...