Search results
Results From The WOW.Com Content Network
BBC Bitesize, [1] also abbreviated to Bitesize, is the BBC's free online study support resource for school-age pupils in the United Kingdom. It is designed to aid pupils in both schoolwork and, for older pupils, exams .
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
The fifth vertex is the rightmost intersection of the horizontal line with the original circle. Steps 6–8 are equivalent to the following version, shown in the animation: 6a. Construct point F as the midpoint of O and W. 7a. Construct a vertical line through F. It intersects the original circle at two of the vertices of the pentagon.
The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles. The 'exterior' or 'external bisector' is the line that divides the supplementary angle (of 180° minus the original angle), formed by one side forming the original angle and the extension of ...
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate is the fifth postulate in Euclid's Elements and a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.