Search results
Results From The WOW.Com Content Network
The first few steps of the reflect-and-prefix method. 4-bit Gray code permutation. The binary-reflected Gray code list for n bits can be generated recursively from the list for n − 1 bits by reflecting the list (i.e. listing the entries in reverse order), prefixing the entries in the original list with a binary 0, prefixing the entries in the ...
The 5-bit Baudot code used in early synchronous multiplexing telegraphs can be seen as an offset-1 (excess-1) reflected binary (Gray) code. One historically prominent example of offset-64 (excess-64) notation was in the floating point (exponential) notation in the IBM System/360 and System/370 generations of computers.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
The reason for adding 6 is that there are 16 possible 4-bit BCD values (since 2 4 = 16), but only 10 values are valid (0000 through 1001). For example: 1001 + 1000 = 10001 9 + 8 = 17 10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number.
Aiken code (symmetry property) Aiken code in hexadecimal coding. The following weighting is obtained for the Aiken code: 2-4-2-1. One might think that double codes are possible for a number, for example 1011 and 0101 could represent 5. However, here one makes sure that the digits 0 to 4 are mirror image complementary to the numbers 5 to 9.
For instance, using a 32-bit format, 16 bits may be used for the integer and 16 for the fraction. The eight's bit is followed by the four's bit, then the two's bit, then the one's bit. The fractional bits continue the pattern set by the integer bits. The next bit is the half's bit, then the quarter's bit, then the eighth's bit, and so on. For ...
Other 4-to-5-bit codes have been used for magnetic recording and are known as group coded recording (GCR), but those are (0,2) run-length limited codes, with at most two consecutive zeros. 4B5B allows up to three consecutive zeros (a (0,3) RLL code), providing a greater variety of control codes. On optical fiber, the 4B5B output is NRZI-encoded.
The very fastest shifters are implemented as full crossbars, in a manner similar to the 4-bit shifter depicted above, only larger. These incur the least delay, with the output always a single gate delay behind the input to be shifted (after allowing the small time needed for the shift count decoder to settle; this penalty, however, is only incurred when the shift count changes).