Search results
Results From The WOW.Com Content Network
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]
Some popular designs use the following types of ANOVA: One-way ANOVA is used to test for differences among two or more independent groups (means), e.g. different levels of urea application in a crop, or different levels of antibiotic action on several different bacterial species, [55] or different levels of effect of some medicine on groups of ...
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.
The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.
For example, Monte Carlo studies have shown that the rank transformation in the two independent samples t-test layout can be successfully extended to the one-way independent samples ANOVA, as well as the two independent samples multivariate Hotelling's T 2 layouts [2] Commercial statistical software packages (e.g., SAS) followed with ...
The two-sample location test compares the location parameters of two samples to each other. A common situation is where the two populations correspond to research subjects who have been treated with two different treatments (one of them possibly being a control or placebo).
In statistics, a mixed-design analysis of variance model, also known as a split-plot ANOVA, is used to test for differences between two or more independent groups whilst subjecting participants to repeated measures.
We assume there are four time points and three dosage levels. Let X be a matrix that holds the data. X is mean centered, thus having zero mean columns. Let A and B denote the main effects and AB the interaction of these effects. Two main effects in a biological experiment can be time (A) and pH (B), and these two effects may interact.