Search results
Results From The WOW.Com Content Network
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
Set up a partial fraction for each factor in the denominator. With this framework we apply the cover-up rule to solve for A, B, and C. D 1 is x + 1; set it equal to zero. This gives the residue for A when x = −1. Next, substitute this value of x into the fractional expression, but without D 1. Put this value down as the value of A.
For example, to change 1 / 4 to a decimal expression, divide 1 by 4 (" 4 into 1 "), to obtain exactly 0.25. To change 1 / 3 to a decimal expression, divide 1... by 3 (" 3 into 1... "), and stop when the desired precision is obtained, e.g., at four places after the decimal separator (ten-thousandths) as 0.3333.
When an object is divided into equal parts, each part is a unit fraction of the whole. Multiplying two unit fractions produces another unit fraction, but other arithmetic operations do not preserve unit fractions. In modular arithmetic, unit fractions can be converted into equivalent whole numbers, allowing modular division to be transformed ...
1 ⁄ 7: 0.142... Vulgar Fraction One Seventh 2150 8528 ⅑ 1 ⁄ 9: 0.111... Vulgar Fraction One Ninth 2151 8529 ⅒ 1 ⁄ 10: 0.1 Vulgar Fraction One Tenth 2152 8530 ⅓ 1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ...
In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
By applying the fundamental recurrence formulas we may easily compute the successive convergents of this continued fraction to be 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, ..., where each successive convergent is formed by taking the numerator plus the denominator of the preceding term as the denominator in the next term, then adding in the ...