Search results
Results From The WOW.Com Content Network
Single lines in hyperbolic geometry have exactly the same properties as single straight lines in Euclidean geometry. For example, two points uniquely define a line, and line segments can be infinitely extended. Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry.
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
Many hyperbolic lines through point P not intersecting line a in the Beltrami Klein model A hyperbolic triheptagonal tiling in a Beltrami–Klein model projection. In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit ...
Poincaré disk with hyperbolic parallel lines Poincaré disk model of the truncated triheptagonal tiling.. In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or ...
The area of a triangle in hyperbolic geometry is bounded while triangles exist with arbitrarily large areas in Euclidean geometry. The set of points on the same side and equally far from a given straight line themselves form a line in Euclidean geometry, but don't in hyperbolic geometry (they form a hypercycle.)
Textbooks on complex functions often mention two common models of hyperbolic geometry: the Poincaré half-plane model where the absolute is the real line on the complex plane, and the Poincaré disk model where the absolute is the unit circle in the complex plane. Hyperbolic motions can also be described on the hyperboloid model of hyperbolic ...
A Poincaré disk showing the hypercycle HC that is determined by the straight line L (termed straight because it cuts the horizon at right angles) and point P. In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).
In hyperbolic geometry, an ideal point, omega point [1] or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line l and a point P not on l, right- and left-limiting parallels to l through P converge to l at ideal points. Unlike the projective case, ideal points form a boundary, not a submanifold. So, these ...