Ad
related to: species area curve diagram template
Search results
Results From The WOW.Com Content Network
The species–area relationship or species–area curve describes the relationship between the area of a habitat, or of part of a habitat, and the number of species found within that area. Larger areas tend to contain larger numbers of species, and empirically, the relative numbers seem to follow systematic mathematical relationships. [ 1 ]
The rank abundance curve visually depicts both species richness and species evenness. Species richness can be viewed as the number of different species on the chart i.e., how many species were ranked. Species evenness is reflected in the slope of the line that fits the graph (assuming a linear, i.e. logarithmic series, relationship).
Template documentation Usage This template's initial visibility currently defaults to autocollapse , meaning that if there is another collapsible item on the page (a navbox, sidebar , or table with the collapsible attribute ), it is hidden apart from its title bar; if not, it is fully visible.
Date/Time Thumbnail Dimensions User Comment; current: 09:52, 9 October 2010: 1,296 × 677 (27 KB): DennisM: Replaced Flowed Text instances by Text, because the former are rendered as black rectangles.
A structural diagram of the open ocean plankton ecosystem model of Fasham, Ducklow & McKelvie (1990). [1]An ecosystem model is an abstract, usually mathematical, representation of an ecological system (ranging in scale from an individual population, to an ecological community, or even an entire biome), which is studied to better understand the real system.
The species-area relationship equation is: =. [10] An example of what a species-area relationship may look like when graphed. In this equation, represents the measure of diversity of a species (for example, the number of species) and is a constant representing the y-intercept.
Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time.Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. [1]
When plotted as a histogram of number (or percent) of species on the y-axis vs. abundance on an arithmetic x-axis, the classic hyperbolic J-curve or hollow curve is produced, indicating a few very abundant species and many rare species. [2] The SAD is central prediction of the Unified neutral theory of biodiversity.