Search results
Results From The WOW.Com Content Network
The concept of the stochastic discount factor (SDF) is used in financial economics and mathematical finance. The name derives from the price of an asset being computable by "discounting" the future cash flow x ~ i {\displaystyle {\tilde {x}}_{i}} by the stochastic factor m ~ {\displaystyle {\tilde {m}}} , and then taking the expectation. [ 1 ]
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
For any fund that evolves randomly with time, volatility is defined as the standard deviation of a sequence of random variables, each of which is the return of the fund over some corresponding sequence of (equally sized) times. Thus, "annualized" volatility σ annually is the standard deviation of an instrument's yearly logarithmic returns. [2]
The best measure is the standard deviation of the difference between the portfolio and index returns. Many portfolios are managed to a benchmark, typically an index. Some portfolios, notably index funds , are expected to replicate, before trading and other costs, the returns of an index exactly, while others ' actively manage ' the portfolio by ...
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator.
The MPT is a mean-variance theory, and it compares the expected (mean) return of a portfolio with the standard deviation of the same portfolio. The image shows expected return on the vertical axis, and the standard deviation on the horizontal axis (volatility). Volatility is described by standard deviation and it serves as a measure of risk. [7]
Financial risk measurement, pricing of financial instruments, and portfolio selection are all based on statistical models. If the model is wrong, risk numbers, prices, or optimal portfolios are wrong. Model risk quantifies the consequences of using the wrong models in risk measurement, pricing, or portfolio selection.
The information ratio is often annualized. While it is then common for the numerator to be calculated as the arithmetic difference between the annualized portfolio return and the annualized benchmark return, this is an approximation because the annualization of an arithmetic difference between terms is not the arithmetic difference of the annualized terms. [6]