Search results
Results From The WOW.Com Content Network
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
Positron emission, beta plus decay, or β + decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (ν e). [1] Positron emission is mediated by the weak force.
Beta decay: beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching for this. Pair production and annihilation
A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively. [2] Beta particles with an energy ...
Potassium-40 undergoes four different types of radioactive decay, including all three main types of beta decay: electron emission (β −) to 40 Ca with a decay energy of 1.31 MeV at 89.6% probability, positron emission (β + to 40 Ar at 0.001% probability, [1] electron capture (EC) to 40 Ar * followed by a gamma decay emitting a photon [Note 1 ...
An interesting example discussed in a final section, is bound state beta decay of rhenium-187. In this process, the beta electron-decay of the parent nuclide is not accompanied by beta electron emission, because the beta particle has been captured into the K-shell of the emitting atom. An antineutrino is emitted, as in all negative beta decays.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
For example, the up quark has T 3 = + + 1 / 2 and the down quark has T 3 = − + 1 / 2 . A quark never decays through the weak interaction into a quark of the same T 3: Quarks with a T 3 of + + 1 / 2 only decay into quarks with a T 3 of − + 1 / 2 and conversely. π + decay through the weak interaction