Search results
Results From The WOW.Com Content Network
Thick clouds reflect a large amount of incoming solar radiation, translating to a high albedo. Thin clouds tend to transmit more solar radiation and, therefore, have a low albedo. Changes in cloud albedo caused by variations in cloud properties have a significant effect on global climate, having the ability to spiral into feedback loops. [3]
Cloud albedo has substantial influence over atmospheric temperatures. Different types of clouds exhibit different reflectivity, theoretically ranging in albedo from a minimum of near 0 to a maximum approaching 0.8. "On any given day, about half of Earth is covered by clouds, which reflect more sunlight than land and water.
Details of how clouds interact with shortwave and longwave radiation at different atmospheric heights [17]. Clouds have two major effects on the Earth's energy budget: they reflect shortwave radiation from sunlight back to space due to their high albedo, but the water vapor contained inside them also absorbs and re-emits the longwave radiation sent out by the Earth's surface as it is heated by ...
Clouds have both cooling and warming effects. They have a cooling effect insofar as they reflect sunlight (as measured by cloud albedo), and a warming effect, insofar as they absorb longwave radiation. For low clouds, the reflection of solar radiation is the larger effect; so, these clouds cool the Earth.
Consequently, without the sun's heat, air cools, causing water droplets (or clouds) to revert to invisible vapor. "Along with the sudden darkness came a change in the clouds' color," Rao wrote of ...
the cloud IR emissivity, with values between 0 and 1, with a global average around 0.7; the effective cloud amount, the cloud amount weighted by the cloud IR emissivity, with a global average of 0.5; the cloud (visible) optical depth varies within a range of 4 and 10. the cloud water path for the liquid and solid (ice) phases of the cloud particles
The setting sun illuminates virga falling from clouds over a paddle boarder on Tempe Town Lake on Nov. 2, 2020. Wisps of precipitation falling from a cloud but evaporating before reaching the ground.
The clouds do not become that color; they are reflecting long and unscattered rays of sunlight, which are predominant at those hours. The effect is much like if a person were to shine a red spotlight on a white sheet. In combination with large, mature thunderheads this can produce blood-red clouds.