When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hexadecimal - Wikipedia

    en.wikipedia.org/wiki/Hexadecimal

    Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.

  3. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    "A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]

  4. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×22 = 2.75. In general, numbers in the base b system are of the form:

  5. Radix - Wikipedia

    en.wikipedia.org/wiki/Radix

    In a positional numeral system, the radix (pl.: radices) or base is the number of unique digits, including the digit zero, used to represent numbers.For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

  6. Complex-base system - Wikipedia

    en.wikipedia.org/wiki/Complex-base_system

    Of particular interest are the quater-imaginary base (base 2i) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign. Base −1 ± i , using digits 0 and 1 , was proposed by S. Khmelnik in 1964 [ 3 ] and Walter F. Penney in 1965.

  7. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    The signature of a metric tensor is defined as the signature of the corresponding quadratic form. [2] It is the number (v, p, r) of positive, negative and zero eigenvalues of any matrix (i.e. in any basis for the underlying vector space) representing the form, counted with their algebraic multiplicities.

  8. Base32 - Wikipedia

    en.wikipedia.org/wiki/Base32

    Because more than one 5-bit Base32 character is needed to represent each 8-bit input byte, if the input is not a multiple of 5 bytes (40 bits), then it doesn't fit exactly in 5-bit Base32 characters. In that case, some specifications require padding characters to be added while some require extra zero bits to make a multiple of 5 bits.

  9. RKM code - Wikipedia

    en.wikipedia.org/wiki/RKM_code

    The letter R was chosen because visually it loosely resembles the Ω glyph, and also because it works nicely as a mnemonic for resistance in many languages. [ citation needed ] The letters G and T weren't part of the first issue of the standard, which pre-dates the introduction of the SI system (hence the name "RKM code"), but were added after ...