Search results
Results From The WOW.Com Content Network
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
Going the other direction, the matrix exponential of any skew-symmetric matrix is an orthogonal matrix (in fact, special orthogonal). For example, the three-dimensional object physics calls angular velocity is a differential rotation, thus a vector in the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} tangent to SO(3) .
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
As with reflections, the orthogonal projection onto a line that does not pass through the origin is an affine, not linear, transformation. Parallel projections are also linear transformations and can be represented simply by a matrix. However, perspective projections are not, and to represent these with a matrix, homogeneous coordinates can be ...
Stated in such a manner, this principle is simply a statement of the Hilbert projection theorem. Nevertheless, the extensive use of this result in signal processing has resulted in the name "orthogonality principle."
This point y is the orthogonal projection of x onto F, and the mapping P F : x → y is linear (see § Orthogonal complements and projections). This result is especially significant in applied mathematics, especially numerical analysis, where it forms the basis of least squares methods. [74]