Search results
Results From The WOW.Com Content Network
The simplest bootstrap method involves taking the original data set of heights, and, using a computer, sampling from it to form a new sample (called a 'resample' or bootstrap sample) that is also of size N. The bootstrap sample is taken from the original by using sampling with replacement (e.g. we might 'resample' 5 times from [1,2,3,4,5] and ...
The bootstrap dataset is made by randomly picking objects from the original dataset. Also, it must be the same size as the original dataset. However, the difference is that the bootstrap dataset can have duplicate objects. Here is a simple example to demonstrate how it works along with the illustration below:
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population.
Subsampling is an alternative method for approximating the sampling distribution of an estimator. The two key differences to the bootstrap are: the resample size is smaller than the sample size and; resampling is done without replacement. The advantage of subsampling is that it is valid under much weaker conditions compared to the bootstrap.
Card paradox: "The next statement is true. The previous statement is false." ... each of equal size to the first. The von Neumann paradox is a two-dimensional version ...
Galton's experimental setup "Standard eugenics scheme of descent" – early application of Galton's insight [1]. In statistics, regression toward the mean (also called regression to the mean, reversion to the mean, and reversion to mediocrity) is the phenomenon where if one sample of a random variable is extreme, the next sampling of the same random variable is likely to be closer to its mean.
Gatz et al. mention that the above formulation was published by Endlich et al. (1988) when treating the weighted mean as a combination of a weighted total estimator divided by an estimator of the population size, [5] based on the formulation published by Cochran (1977), as an approximation to the ratio mean. However, Endlich et al. didn't seem ...