Ad
related to: coordinate plane real life example of a ratio equation worksheetgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x 2 + y 2 = 4; the area, the perimeter and the tangent line at any point can be computed from this equation by using integrals and derivatives, in a way that can be applied to any curve.
Special cases are called the real line R 1, the real coordinate plane R 2, and the real coordinate three-dimensional space R 3. With component-wise addition and scalar multiplication, it is a real vector space. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the ...
Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple. In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates.
The equation = is an equation of a line in the projective plane (see definition of a line in the projective plane), and is called the line at infinity. The equivalence classes, , are the lines through the origin with the origin removed. The origin does not really play an essential part in the previous discussion so it can be added back in ...
The relationship between different systems is described by coordinate transformations, which give formulas for the coordinates in one system in terms of the coordinates in another system. For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then ...
A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set R 2 {\displaystyle \mathbb {R} ^{2}} of the ordered pairs of real numbers (the real coordinate plane ), equipped with the dot product , is often called the Euclidean plane or standard Euclidean plane , since every Euclidean plane is isomorphic to it.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
A plane curve can often be represented in Cartesian coordinates by an implicit equation of the form (,) = for some specific function f. If this equation can be solved explicitly for y or x – that is, rewritten as y = g ( x ) {\displaystyle y=g(x)} or x = h ( y ) {\displaystyle x=h(y)} for specific function g or h – then this provides an ...