Search results
Results From The WOW.Com Content Network
Hyperthyroidism: Inappropriately increased thyroid function primary hyperthyroidism: Inappropriate secretion of thyroid hormones, e.g. in case of Graves' disease. secondary hyperthyroidism: Rare condition, e.g. in case of TSH producing pituitary adenoma or partial thyroid hormone resistance.
Thyroid hormones act on nearly every cell in the body. They act to increase the basal metabolic rate, affect protein synthesis, help regulate long bone growth (synergy with growth hormone) and neural maturation, and increase the body's sensitivity to catecholamines (such as adrenaline) by permissiveness. [12]
Thyroid hormones play a particularly crucial role in brain maturation during fetal development and first few years of postnatal life [28] The thyroid hormones also play a role in maintaining normal sexual function, sleep, and thought patterns. Increased levels are associated with increased speed of thought generation but decreased focus. [27]
By contrast, the hormones of the anterior pituitary gland (the adenohypophysis) are secreted from endocrine cells that, in mammals, are not directly innervated, yet the secretion of these hormones (adrenocorticotrophic hormone, luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, prolactin, and growth hormone) remains ...
Thyroid follicular cells (also called thyroid epithelial cells or thyrocytes [1]) are the major cell type in the thyroid gland, and are responsible for the production and secretion of the thyroid hormones thyroxine (T 4) and triiodothyronine (T 3).
Thyroid's secretory capacity (G T, also referred to as thyroid's incretory capacity, maximum thyroid hormone output, T4 output or, if calculated from serum levels of thyrotropin and thyroxine, as SPINA-GT [a]) is the maximum stimulated amount of thyroxine that the thyroid can produce in a given time-unit (e.g. one second). [2] [3]
At 20 weeks, the fetus is able to implement feedback mechanisms for the production of thyroid hormones. During fetal development, T 4 is the major thyroid hormone being produced while triiodothyronine (T 3) and its inactive derivative, reverse T 3, are not detected until the third trimester.
For example, thyrotropin-releasing hormone (TRH) is released from the hypothalamus in response to low levels of secretion of thyroid-stimulating hormone (TSH) from the pituitary gland. The TSH in turn is under feedback control by the thyroid hormones T4 and T3. When the level of TSH is too high, they feed back on the brain to shut down the ...