Search results
Results From The WOW.Com Content Network
A much simpler interpolation scheme for approximating the electronic band structure, especially for the d-bands of transition metals, is the parameterized tight-binding method conceived in 1954 by John Clarke Slater and George Fred Koster, [1] sometimes referred to as the SK tight-binding method. With the SK tight-binding method, electronic ...
The Density Functional Based Tight Binding method is an approximation to density functional theory, which reduces the Kohn-Sham equations to a form of tight binding related to the Harris functional. The original [ 1 ] approximation limits interactions to a non-self-consistent two center hamiltonian between confined atomic states.
Tight-binding methods, e.g. a large family of methods known as DFTB, [24] are sometimes classified as semiempirical methods as well. More recent examples include the semiempirical quantum mechanical methods GFNn-xTB (n=0,1,2), which are particularly suited for the geometry, vibrational frequencies, and non-covalent interactions of large ...
The method has been generalized and extended into a number of DFT tight-binding approaches [5] [6] and was a forerunner to the SIESTA program, particularly in its use of Sankey's compactly localized "fireball" orbitals. [7] After his retirement, Sankey developed an interest in oncology and particularly the treatment of prostate cancer.
Electronic structure methods; Valence bond theory; Coulson–Fischer theory Generalized valence bond Modern valence bond theory: Molecular orbital theory; Hartree–Fock method Semi-empirical quantum chemistry methods Møller–Plesset perturbation theory Configuration interaction Coupled cluster Multi-configurational self-consistent field
Henryk A. Witek, Stephan Irle, Keiji Morokuma, "Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method", J. Chem. Phys. 121, 5163 (2004). Su YT, Huang YH, Witek HA, Lee YP, "Infrared absorption spectrum of the simplest Criegee intermediate CH2OO", Science 340, 174 (2013).
The book has been reviewed several times and has been recommended in many other works. In a review of another work by the MRS Bulletin in 2011, the book was said to be "the indispensable work on electronic systems for experimental condensed matter physicists", due largely to the book's "lucidity and panache". [ 2 ]
The Hubbard model introduces short-range interactions between electrons to the tight-binding model, which only includes kinetic energy (a "hopping" term) and interactions with the atoms of the lattice (an "atomic" potential). When the interaction between electrons is strong, the behavior of the Hubbard model can be qualitatively different from ...