When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Python has the statsmodelsS package which includes many models and functions for time series analysis, including ARMA. Formerly part of the scikit-learn library, it is now stand-alone and integrates well with Pandas. PyFlux has a Python-based implementation of ARIMAX models, including Bayesian ARIMAX models.

  3. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The CRAN task view on Time Series is the reference with many more links. The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function. [16]

  4. Forecast either to existing data (static forecast) or "ahead" (dynamic forecast, forward in time) with these ARMA terms. Apply the reverse filter operation (fractional integration to the same level d as in step 1) to the forecasted series, to return the forecast to the original problem units (e.g. turn the ersatz units back into Price).

  5. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.

  6. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]

  7. Unevenly spaced time series - Wikipedia

    en.wikipedia.org/wiki/Unevenly_spaced_time_series

    Traces is a Python library for analysis of unevenly spaced time series in their unaltered form.; CRAN Task View: Time Series Analysis is a list describing many R (programming language) packages dealing with both unevenly (or irregularly) and evenly spaced time series and many related aspects, including uncertainty.

  8. RATS (software) - Wikipedia

    en.wikipedia.org/wiki/RATS_(software)

    The program was then expanded by Tom Doan, then of the Federal Reserve Bank of Minneapolis, who added ARIMA and VAR capabilities and went on to found the consulting firm that owns and distributes RATS software. In its early incarnations, RATS was designed primarily for time series analysis, but as it

  9. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.