Search results
Results From The WOW.Com Content Network
where T is the tension force in the string, and μ is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal strings are thus a non-dispersive medium, i.e. the phase and group velocities are equal and independent (to first order) of vibration frequency.
Essential for water waves, and other wave phenomena in physics, is that free propagating waves of non-zero amplitude only exist when the angular frequency ω and wavenumber k (or equivalently the wavelength λ and period T) satisfy a functional relationship: the frequency dispersion relation [4] [5]
The discovery of the linear relationship between redshift and distance, coupled with a supposed linear relation between recessional velocity and redshift, yields a straightforward mathematical expression for Hubble's law as follows: = where v is the recessional velocity, typically expressed in km/s.
Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).
The wavelength of capillary waves on water is typically less than a few centimeters, with a phase speed in excess of 0.2–0.3 meter/second. A longer wavelength on a fluid interface will result in gravity–capillary waves which are influenced by both the effects of surface tension and gravity, as well as by fluid inertia.
where m is the Bragg order (a positive integer), λ B the diffracted wavelength, Λ the fringe spacing of the grating, θ the angle between the incident beam and the normal (N) of the entrance surface and φ the angle between the normal and the grating vector (K G). Radiation that does not match Bragg's law will pass through the VBG undiffracted.
Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics. For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum.
In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y-axis which are half the maximum amplitude.