Search results
Results From The WOW.Com Content Network
Silica and alumina coating can improve the chemical and thermal stability of nanoparticles. This fact has great importance in the in-situ study of catalytic reactions. The high sensitivity of the SHINERS surfaces makes these nanostructures a promising tool for the study of liquid-solid interfaces, especially in spectroelectrochemistry. [3] [12 ...
In contrast, a solid support system which separates the individual metal centers would render a catalysts that operates through pathway 2 useless, since it requires a step which is second order in metal center. Determining the reaction mechanism is much like other methods, with some techniques unique to electrochemistry.
The Handbook of Electrochemistry, edited by Cynthia Zoski, is a sourcebook containing a wide range of electrochemical information.It provides details of experimental considerations, typical calculations, and illustrates many of the possibilities open to electrochemical experimentators.
Electrochemical engineering is the branch of chemical engineering dealing with the technological applications of electrochemical phenomena, such as electrosynthesis of chemicals, electrowinning and refining of metals, flow batteries and fuel cells, surface modification by electrodeposition, electrochemical separations and corrosion.
A well-known electrosynthesis is the Kolbe electrolysis, in which two carboxylic acids decarboxylate, and the remaining structures bond together:; A variation is called the non-Kolbe reaction when a heteroatom (nitrogen or oxygen) is present at the α-position.
In electrochemistry, a half-cell is a structure that contains a conductive electrode and a surrounding conductive electrolyte separated by a naturally occurring Helmholtz double layer. Chemical reactions within this layer momentarily pump electric charges between the electrode and the electrolyte, resulting in a potential difference between the ...
Linear potential sweep. In analytical chemistry, linear sweep voltammetry is a method of voltammetry where the current at a working electrode is measured while the potential between the working electrode and a reference electrode is swept linearly in time.
An ultramicroelectrode (UME) is a working electrode with a low surface area primarily used in voltammetry experiments. The small size of UMEs limits mass transfer, which give them large diffusion layers and small overall currents at typical electrochemical potentials.