Search results
Results From The WOW.Com Content Network
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS). A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual. This leaves the other graphs in the 3-connected class because each 3-regular graph can be ...
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
The automorphism group of the Tutte 12-cage is of order 12,096 and is a semi-direct product of the projective special unitary group PSU(3,3) with the cyclic group Z/2Z. [1] It acts transitively on its edges but not on its vertices, making it a semi-symmetric graph, a regular graph that is edge-transitive but not vertex-transitive.
In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.
In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...
The three smallest cubic semi-symmetric graphs are the Gray graph, with 54 vertices, this the smallest of the Iofina-Ivanov graphs with 110, and the Ljubljana graph with 112. [4] [5] It is only for the five Iofina-Ivanov graphs that the symmetry group acts primitively on each partition of the vertices.
A cubic graph (all vertices have degree three) of girth g that is as small as possible is known as a g-cage (or as a (3,g)-cage).The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. [3]
The cube-connected cycles of order n is the Cayley graph of a group that acts on binary words of length n by rotation and flipping bits of the word. [1] The generators used to form this Cayley graph from the group are the group elements that act by rotating the word one position left, rotating it one position right, or flipping its first bit.