Search results
Results From The WOW.Com Content Network
Electrostatic spray ionization (ESTASI) is an ambient ionization method for mass spectrometry (MS) analysis of samples located on a flat or porous surface, or inside a microchannel. It was developed in 2011 by Professor Hubert H. Girault ’s group at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. [ 1 ]
In electromagnetism, the Townsend discharge or Townsend avalanche is an ionisation process for gases where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons.
The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the electrostatic free energy. [13]
Electrostatic spray ionization (ESTASI) involved the analysis of samples located on a flat or porous surface, or inside a microchannel. A droplet containing analytes is deposited on a sample area, to which a pulsed high voltage to is applied. When the electrostatic pressure is larger than the surface tension, droplets and ions are sprayed.
The electrostatic repulsion of ions, ionic recombination, and air convection currents due to heating tend to break up ionized regions, so streamers have a short lifetime. In electromagnetism , a streamer discharge , also known as filamentary discharge , is a type of transient electric discharge which forms at the surface of a conductive ...
The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods). It was derived by Max Born. [1] [2]
It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution. The Debye–Hückel equation provides a starting point for modern treatments of non-ideality of electrolyte solutions.
In chemistry, ion association is a chemical reaction whereby ions of opposite electric charge come together in solution to form a distinct chemical entity. [1] [2] Ion associates are classified, according to the number of ions that associate with each other, as ion pairs, ion triplets, etc. Ion pairs are also classified according to the nature of the interaction as contact, solvent-shared or ...