Search results
Results From The WOW.Com Content Network
The resistance path is the total resistance back through the supply transformer; to measure this an engineer will use an "earth fault loop impedance meter". The application of a low voltage allows a small current to pass from the socket back through earth to the supply transformer and distribution board.
Short circuit analysis analyzes the power flow after a fault occurs in a power network. The faults may be three-phase short circuit, one-phase grounded, two-phase short circuit, two-phase grounded, one-phase break, two-phase break or complex faults. Results of such an analysis may help determine the following: Magnitude of the fault current
Since the secondary of the transformer is open, the primary draws only no-load current, which will have some copper loss. This no-load current is very small and because the copper loss in the primary is proportional to the square of this current, it is negligible. There is no copper loss in the secondary because there is no secondary current. [1]
Condition monitoring of transformers in electrical engineering is the process of acquiring and processing data related to various parameters of transformers to determine their state of quality and predict their failure. This is done by observing the deviation of the transformer parameters from their expected values.
With negligible current in the neutral under normal conditions, an undersized (unable to carry a continuous fault load) transformer may be used only as short-time rating is required, provided the defective load will be automatically disconnected in a fault condition. The transformer's impedance should not be too low for desired maximum fault ...
Since practical calculations involve a number of approximations and estimates, some judgment is required in applying the results of a short-circuit calculation to the selection of apparatus. [4] Making capacity i.e. maximum fault current , device can carry, if it is closed in to the fault should be considered.
A fault current limiter (FCL), also known as fault current controller (FCC), [1] is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network) without complete disconnection. The term includes superconducting, solid-state and inductive devices. [2]
In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t