Search results
Results From The WOW.Com Content Network
In biology, cell signaling (cell signalling in British English) is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Typically, the signaling process involves three components: the signal, the receptor, and the effector.
Synaptic signaling, an integral part of nervous system activity, occurs between neurons and target cells. These target cells can also be neurons or other cell types (i.e. muscle or gland cells). Protocadherins , a member of the cadherin family, mediate the adhesion of neurons to their target cells at synapses otherwise known as synaptic junctions.
Changes in postsynaptic signaling are most commonly associated with a N-methyl-d-aspartic acid receptor (NMDAR)-dependent LTP and long-term depression (LTD) due to the influx of calcium into the post-synaptic cell, which are the most analyzed forms of plasticity at excitatory synapses.
Each gap junction (sometimes called a nexus) contains numerous gap junction channels that cross the plasma membranes of both cells. [11] With a lumen diameter of about 1.2 to 2.0 nm, [2] [12] the pore of a gap junction channel is wide enough to allow ions and even medium-size molecules like signaling molecules to flow from one cell to the next, [2] [13] thereby connecting the two cells' cytoplasm.
In cell biology, there are a multitude of signalling pathways. Cell signalling is part of the molecular biology system that controls and coordinates the actions of cells. Akt/PKB signalling pathway; AMPK signalling pathway; cAMP-dependent pathway; Eph/ephrin signalling pathway; Hedgehog signalling pathway; Hippo signalling pathway
SNARE proteins – "SNAP REceptors" – are a large protein family consisting of at least 24 members in yeasts and more than 60 members in mammalian and plant cells. [2] [3] [4] The primary role of SNARE proteins is to mediate the fusion of vesicles with the target membrane; this notably mediates exocytosis, but can also mediate the fusion of vesicles with membrane-bound compartments (such as ...
A diagram of the proteins found in the active zone. The active zone is present in all chemical synapses examined so far and is present in all animal species. The active zones examined so far have at least two features in common, they all have protein dense material that project from the membrane and tethers synaptic vesicles close to the membrane and they have long filamentous projections ...
One such example of a spiking neuron model may be a highly detailed mathematical model that includes spatial morphology. Another may be a conductance-based neuron model that views neurons as points and describes the membrane voltage dynamics as a function of trans-membrane currents.