When.com Web Search

  1. Ads

    related to: ionization constants of weak acids and bases cheat sheet free dmv test road signs

Search results

  1. Results From The WOW.Com Content Network
  2. Proton affinity - Wikipedia

    en.wikipedia.org/wiki/Proton_affinity

    The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.

  3. Weak base - Wikipedia

    en.wikipedia.org/wiki/Weak_base

    The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5] When there is a hydrogen ion gradient between two sides of the biological membrane, the concentration of some weak bases are focused on only one side of the membrane. [6]

  4. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    However, general purpose computer programs that are used to derive equilibrium constant values from experimental data use association constants for both acids and bases. Because stability constants for a metal-ligand complex are always specified as association constants, ligand protonation must also be specified as an association reaction. [17]

  5. Dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Dissociation_constant

    Strong acids, such as sulfuric or phosphoric acid, have large dissociation constants; weak acids, such as acetic acid, have small dissociation constants. The symbol K a , used for the acid dissociation constant, can lead to confusion with the association constant , and it may be necessary to see the reaction or the equilibrium expression to ...

  6. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ⁡ ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.

  7. pH indicator - Wikipedia

    en.wikipedia.org/wiki/PH_indicator

    The equations, derived from the acidity constant and basicity constant, states that when pH equals the pK a or pK b value of the indicator, both species are present in a 1:1 ratio. If pH is above the p K a or p K b value, the concentration of the conjugate base is greater than the concentration of the acid, and the color associated with the ...

  8. Dissociation (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dissociation_(chemistry)

    Simply because a substance does not readily dissolve does not make it a weak electrolyte. Acetic acid (CH 3 COOH) and ammonium (NH + 4) are good examples. Acetic acid is extremely soluble in water, but most of the compound dissolves into molecules, rendering it a weak electrolyte. Weak bases and weak acids are generally weak electrolytes.

  9. Conjugate (acid-base theory) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(acid-base_theory)

    One use of conjugate acids and bases lies in buffering systems, which include a buffer solution. In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications.