Search results
Results From The WOW.Com Content Network
Tensors are of importance in pure and applied mathematics, physics and engineering. Subcategories. This category has the following 5 subcategories, out of 5 total. C.
This table shows important examples of tensors on vector spaces and tensor fields on manifolds. The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor.
This list of moment of inertia tensors is given for principal axes of each object.. To obtain the scalar moments of inertia I above, the tensor moment of inertia I is projected along some axis defined by a unit vector n according to the formula:
This is a list of formulas encountered in Riemannian geometry. ... Here are some formulas for conformal changes in tensors associated with the metric.
Cartesian tensors are widely used in various branches of continuum mechanics, such as fluid mechanics and elasticity. In classical continuum mechanics, the space of interest is usually 3-dimensional Euclidean space, as is the tangent space at each point.
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
A list of moments of inertia formulas for standard body shapes provides a way to obtain the moment of inertia of a complex body as an assembly of simpler shaped bodies. The parallel axis theorem is used to shift the reference point of the individual bodies to the reference point of the assembly.
Pages in category "Metric tensors" The following 16 pages are in this category, out of 16 total. This list may not reflect recent changes. * Metric tensor;