Search results
Results From The WOW.Com Content Network
A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass , including terrestrial planets (including Earth ), dwarf planets , natural satellites , planetesimals and many other small Solar System bodies ...
Examples of closed surfaces include the sphere, the torus and the Klein bottle. Examples of non-closed surfaces include an open disk (which is a sphere with a puncture), an open cylinder (which is a sphere with two punctures), and the Möbius strip. A surface embedded in three-dimensional space is
Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface.
Ruled surface generated by two Bézier curves as directrices (red, green) A surface in 3-dimensional Euclidean space is called a ruled surface if it is the union of a differentiable one-parameter family of lines. Formally, a ruled surface is a surface in is described by a parametric representation of the form
A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]
So there are 19-dimensional families of complex analytic K3 surfaces with an elliptic fibration, and 18-dimensional moduli spaces of projective K3 surfaces with an elliptic fibration. Example: Every smooth quartic surface X in that contains a line L has an elliptic fibration , given by projecting away from L. The moduli space of all smooth ...
There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...
It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting Q A = 0 in Gauss's law, where Q A is the charge enclosed by the Gaussian surface). With the same example, using a larger ...