When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Data normalization (or feature scaling) includes methods that rescale input data so that the features have the same range, mean, variance, or other statistical properties. For instance, a popular choice of feature scaling method is min-max normalization , where each feature is transformed to have the same range (typically [ 0 , 1 ...

  3. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  4. File:The effect of z-score normalization on k-means ...

    en.wikipedia.org/wiki/File:The_effect_of_z-score...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  5. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    Data can be binary, ordinal, or continuous variables. It works by normalizing the differences between each pair of variables and then computing a weighted average of these differences. The distance was defined in 1971 by Gower [ 1 ] and it takes values between 0 and 1 with smaller values indicating higher similarity.

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected. In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature ...

  7. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The random walk normalized Laplacian can also be called the left normalized Laplacian := + since the normalization is performed by multiplying the Laplacian by the normalization matrix + on the left. It has each row summing to zero since P = D + A {\displaystyle P=D^{+}A} is right stochastic , assuming all the weights are non-negative.

  8. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    Normalizing the RMSD facilitates the comparison between datasets or models with different scales. Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [ 4 ]

  9. Calinski–Harabasz index - Wikipedia

    en.wikipedia.org/wiki/Calinski–Harabasz_index

    Given a data set of n points: {x 1, ..., x n}, and the assignment of these points to k clusters: {C 1, ..., C k}, the Calinski–Harabasz (CH) Index is defined as the ratio of the between-cluster separation (BCSS) to the within-cluster dispersion (WCSS), normalized by their number of degrees of freedom: