Search results
Results From The WOW.Com Content Network
The midpoint method computes + so that the red chord is approximately parallel to the tangent line at the midpoint (the green line). In numerical analysis , a branch of applied mathematics , the midpoint method is a one-step method for numerically solving the differential equation ,
Specific choices of give different types of Riemann sums: . If = for all i, the method is the left rule [2] [3] and gives a left Riemann sum.; If = for all i, the method is the right rule [2] [3] and gives a right Riemann sum.
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
where is a function : [,), and the initial condition is a given vector. First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted ...
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Many test statistics, scores, and estimators encountered in practice contain sums of certain random variables in them, and even more estimators can be represented as sums of random variables through the use of influence functions. The central limit theorem implies that those statistical parameters will have asymptotically normal distributions.
The function corresponding to the L 0 space is not a norm, and is thus often referred to in quotes: 0-"norm". In equations, for a given (finite) data set X , thought of as a vector x = ( x 1 ,…, x n ) , the dispersion about a point c is the "distance" from x to the constant vector c = ( c ,…, c ) in the p -norm (normalized by the number of ...
For a sample set, the maximum function is non-smooth and thus non-differentiable. For optimization problems that occur in statistics it often needs to be approximated by a smooth function that is close to the maximum of the set. A smooth maximum, for example, g(x 1, x 2, …, x n) = log( exp(x 1) + exp(x 2) + … + exp(x n) )