Search results
Results From The WOW.Com Content Network
The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
The rank-biserial is the correlation used with the Mann–Whitney U test, a method commonly covered in introductory college courses on statistics. The data for this test consists of two groups; and for each member of the groups, the outcome is ranked for the study as a whole.
It extends the Mann–Whitney U test, which is used for comparing only two groups. The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic ...
In statistics, the Hodges–Lehmann estimator is a robust and nonparametric estimator of a population's location parameter.For populations that are symmetric about one median, such as the Gaussian or normal distribution or the Student t-distribution, the Hodges–Lehmann estimator is a consistent and median-unbiased estimate of the population median.
A τ test is a non-parametric hypothesis test for statistical dependence based on the τ coefficient. It is a measure of rank correlation : the similarity of the orderings of the data when ranked by each of the quantities.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Mann–Whitney_test&oldid=613730219"
Henry Berthold Mann (27 October 1905, Vienna – 1 February 2000, Tucson) [1] was a professor of mathematics and statistics at the Ohio State University. Mann proved the Schnirelmann-Landau conjecture in number theory, and as a result earned the 1946 Cole Prize. He and his student developed the ("Mann-Whitney") U-statistic of nonparametric ...
It is thus highly similar to the well-known Mann–Whitney U test. The core difference is that the Mann-Whitney U test assumes equal variances and a location shift model, while the Brunner Munzel test does not require these assumptions, making it more robust and applicable to a wider range of conditions. As a result, multiple authors recommend ...