Search results
Results From The WOW.Com Content Network
The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber , who developed it in 1919. [ 1 ] [ 2 ] [ 3 ] It was also independently formulated by Kazimierz Fajans [ 4 ] and published concurrently in the same journal. [ 1 ]
In these cases the polarization energy E pol associated with ions on polar lattice sites may be included in the Born–Haber cycle. As an example, one may consider the case of iron-pyrite FeS 2 . It has been shown that neglect of polarization led to a 15% difference between theory and experiment in the case of FeS 2 , whereas including it ...
In some reactions between highly reactive metals (usually from Group 1 or Group 2) and highly electronegative halogen gases, or water, the atoms can be ionized by electron transfer, [16] a process thermodynamically understood using the Born–Haber cycle. [17] Salts are formed by salt-forming reactions. A base and an acid, e.g., NH 3 + HCl → ...
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
Sodium chloride / ˌ s oʊ d i ə m ˈ k l ɔːr aɪ d /, [8] commonly known as edible salt, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chlorine ions. It is transparent or translucent, brittle, hygroscopic , and occurs as the mineral halite .
The lowest point on such a PES will define the equilibrium structure of a water molecule. Figure 3: PES for water molecule: Shows the energy minimum corresponding to optimized molecular structure for water, O−H bond length of 0.0958 nm and H−O−H bond angle of 104.5°
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
During the reduction half-cycle of the stochiometric cycle, the metal oxide is reduced and forms a new metal oxide with different oxidation states (Fe 3 O 4 → 3FeO + 1/2 O 2); a non-stochiometric cycle's reduction of the metal oxide will produce vacancies, often oxygen vacancies, but the crystal structure remains stable and only a portion of ...