Search results
Results From The WOW.Com Content Network
The configuration linear program (configuration-LP) is a linear programming technique used for solving combinatorial optimization problems. It was introduced in the context of the cutting stock problem. [1] [2] Later, it has been applied to the bin packing [3] [4] and job scheduling problems.
Successive Linear Programming (SLP), also known as Sequential Linear Programming, is an optimization technique for approximately solving nonlinear optimization problems. [1] It is related to, but distinct from, quasi-Newton methods .
This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP. [4] More recent references consider outcome set based solution concepts [5] and corresponding algorithms.
Semidefinite programming subsumes SOCPs as the SOCP constraints can be written as linear matrix inequalities (LMI) and can be reformulated as an instance of semidefinite program. [4] The converse, however, is not valid: there are positive semidefinite cones that do not admit any second-order cone representation. [ 3 ]
A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...
Sequential linear-quadratic programming (SLQP) is an iterative method for nonlinear optimization problems where objective function and constraints are twice continuously differentiable. Similarly to sequential quadratic programming (SQP), SLQP proceeds by solving a sequence of optimization subproblems.
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
Goal programming is a branch of multiobjective optimization, which in turn is a branch of multi-criteria decision analysis (MCDA). It can be thought of as an extension or generalisation of linear programming to handle multiple, normally conflicting objective measures.