Search results
Results From The WOW.Com Content Network
In computer programming, a virtual thread is a thread that is managed by a runtime library or virtual machine (VM) and made to resemble "real" operating system thread to code executing on it, while requiring substantially fewer resources than the latter.
Instead, it will begin the download process using a non-blocking mechanism (such as a background thread), and immediately return an unresolved, unrejected Task<byte[]> to this function. With the await keyword attached to the Task , this function will immediately proceed to return a Task<int> to its caller, who may then continue on with other ...
In computer programming, thread-local storage (TLS) is a memory management method that uses static or global memory local to a thread. The concept allows storage of data that appears to be global in a system with separate threads. Many systems impose restrictions on the size of the thread-local memory block, in fact often rather tight limits.
The size of a thread pool is the number of threads kept in reserve for executing tasks. It is usually a tunable parameter of the application, adjusted to optimize program performance. [3] Deciding the optimal thread pool size is crucial to optimize performance.
Schematic representation of how threads work under GIL. Green - thread holding GIL, red - blocked threads. A global interpreter lock (GIL) is a mechanism used in computer-language interpreters to synchronize the execution of threads so that only one native thread (per process) can execute basic operations (such as memory allocation and reference counting) at a time. [1]
Multiple threads can interfere with each other when sharing hardware resources such as caches or translation lookaside buffers (TLBs). As a result, execution times of a single thread are not improved and can be degraded, even when only one thread is executing, due to lower frequencies or additional pipeline stages that are necessary to accommodate thread-switching hardware.
The jump-table will have a fixed size and be able to grow, adding cases as new types are encountered up to some small maximum number of cases such as 4, 6 or 8. Once it reaches its maximum size, execution for a new receiver type will "fall-off" the end and enter the run-time, typically to perform a method lookup starting with the first-level ...
Eager thread-specific futures can be straightforwardly implemented in non-thread-specific futures, by creating a thread to calculate the value at the same time as creating the future. In this case it is desirable to return a read-only view to the client, so that only the newly created thread is able to resolve this future.