Search results
Results From The WOW.Com Content Network
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
k is the resistance of the material to initial penetration [3] n is Meyer's index, a measure of the effect of the deformation on the hardness of the material [3] d is the chordal diameter (diameter of the indentation) The index n usually lies between the values of 2, for fully strain hardened materials, and 2.5, for fully annealed materials.
In general, the yield strength of a material is an adequate indicator of the material's mechanical strength. Considered in tandem with the fact that the yield strength is the parameter that predicts plastic deformation in the material, one can make informed decisions on how to increase the strength of a material depending on its microstructural ...
Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. [1] Systematic selection of the best material for a given application begins with properties and costs of
The Tsai–Wu failure criterion is a phenomenological material failure theory which is widely used for anisotropic composite materials which have different strengths in tension and compression. [1] The Tsai-Wu criterion predicts failure when the failure index in a laminate reaches 1.
The Brinell hardness number can be correlated with the ultimate tensile strength (UTS), although the relationship is dependent on the material, and therefore determined empirically. The relationship is based on Meyer's index (n) from Meyer's law. If Meyer's index is less than 2.2 then the ratio of UTS to BHN is 0.36.
A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed to be zero for many engineering applications. Glass fibers have a tensile strength greater than that of steel, but bulk glass usually does not.
Stress–strength analysis is the analysis of the strength of the materials and the interference of the stresses placed on the materials, where "materials" is not necessarily the raw goods or parts, but can be an entire system. Stress-Strength Analysis is a tool used in reliability engineering.