Search results
Results From The WOW.Com Content Network
Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space
The perimeter of the medial triangle equals the semiperimeter of the original triangle, and the area is one quarter of the area of the original triangle. This can be proven by the midpoint theorem of triangles and Heron's formula. The orthocenter of the medial triangle coincides with the circumcenter of the original triangle.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
The perimeter of a parallelogram is 2(a + b) where a and b are the lengths of adjacent sides. Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area. [7] The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a ...
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
This is commonly called the shoelace formula or surveyor's formula. [ 6 ] The area A of a simple polygon can also be computed if the lengths of the sides, a 1 , a 2 , ..., a n and the exterior angles , θ 1 , θ 2 , ..., θ n are known, from:
For a polygon with 2n sides, the parallelogram will have a base of length ns, and a height h. As the number of sides increases, the length of the parallelogram base approaches half the circle circumference, and its height approaches the circle radius. In the limit, the parallelogram becomes a rectangle with width π r and height r.
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.