When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Translational partition function - Wikipedia

    en.wikipedia.org/wiki/Translational_partition...

    In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]

  3. Partition function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution.

  4. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for

  5. Transfer-matrix method (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    In either case, the partition function may be solved exactly using eigenanalysis. If the matrices are all the same matrix W , the partition function may be approximated as the N th power of the largest eigenvalue of W , since the trace is the sum of the eigenvalues and the eigenvalues of the product of two diagonal matrices equals the product ...

  6. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    What has been presented above is essentially a derivation of the canonical partition function. As one can see by comparing the definitions, the Boltzmann sum over states is equal to the canonical partition function. Exactly the same approach can be used to derive Fermi–Dirac and Bose–Einstein statistics.

  7. Isothermal–isobaric ensemble - Wikipedia

    en.wikipedia.org/wiki/Isothermal–isobaric_ensemble

    This is almost the partition function for the -ensemble, but it has units of volume, an unavoidable consequence of taking the above sum over volumes into an integral. Restoring the constant C {\displaystyle C} yields the proper result for Δ ( N , P , T ) {\displaystyle \Delta (N,P,T)} .

  8. Rotational partition function - Wikipedia

    en.wikipedia.org/wiki/Rotational_partition_function

    Rotational energies are quantized. For a diatomic molecule like CO or HCl, or a linear polyatomic molecule like OCS in its ground vibrational state, the allowed rotational energies in the rigid rotor approximation are = = (+) = (+). J is the quantum number for total rotational angular momentum and takes all integer values starting at zero, i.e., =,,, …, = is the rotational constant, and is ...

  9. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    Z is the partition function, corresponding to the denominator in equation 1; m is the molecular mass of the gas; T is the thermodynamic temperature; k B is the Boltzmann constant. This distribution of N i : N is proportional to the probability density function f p for finding a molecule with these values of momentum components, so: